粘性通量离散方法

粘性通量及其离散方法

Viscous Flux

对于一般三维 NS 方程,粘性通量表示为

Fv=[0nxτxx+nyτxy+nzτxznxτyx+nyτyy+nzτyznxτzx+nyτzy+nzτzznxΘx+nyΘy+nzΘz]\begin{equation} \bold{F_v} = \begin{bmatrix} 0 \\ n_x \tau_{xx} + n_y \tau_{xy} + n_z \tau_{xz} \\ n_x \tau_{yx} + n_y \tau_{yy} + n_z \tau_{yz} \\ n_x \tau_{zx} + n_y \tau_{zy} + n_z \tau_{zz} \\ n_x \Theta_{x} + n_y \Theta_{y} + n_z \Theta_{z} \\ \end{bmatrix} \end{equation}

式中

Θx=uτxx+vτxy+wτxz+kTxΘy=uτyx+vτyy+wτyz+kTyΘz=uτzx+vτzy+wτzz+kTz\begin{equation} \begin{gather*} \Theta_{x} = u \tau_{xx} + v \tau_{xy} + w \tau_{xz} + k \frac{\partial T}{\partial x} \\ \Theta_{y} = u \tau_{yx} + v \tau_{yy} + w \tau_{yz} + k \frac{\partial T}{\partial y} \\ \Theta_{z} = u \tau_{zx} + v \tau_{zy} + w \tau_{zz} + k \frac{\partial T}{\partial z} \\ \end{gather*} \end{equation}

对于组分方程

Fv(m)=ρYmVj(m)\begin{equation} \bold{F_v^{(m)}} = - \rho Y_m V_j^{(m)} \end{equation}

式中 Vj(m)V_j^{(m)} 为扩散速度

Vj(m)=DYmYmxj\begin{equation} V_j^{(m)} = - \frac{D}{Y_m} \frac{Y_m}{x_j} \end{equation}

Diffusion Transport Poperties Sign Law
Momutum Dynamic Viscosity μ\mu Stokes
Heat Thermal Conductivity kk Fourier
Species Diffusion Coefficient DD Fick

Viscous Stress

粘性应力通过应力张量 τˉˉ\bar{\bar{\tau}},笛卡尔坐标系中一般形式为

τˉˉ=[τxxτxyτxzτyxτyyτyzτzxτzyτzz]τij{i=j,normal stressij,shear stress\begin{equation} \bar{\bar{\tau}} = \begin{bmatrix} \tau_{xx} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \tau_{yy} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \tau_{zz} \\ \end{bmatrix} \qquad \tau_{ij} \Rightarrow \begin{cases} i = j, & \text{normal stress} \\ i \ne j, & \text{shear stress} \\ \end{cases} \end{equation}

对于牛顿流体介质,粘性应力张量 (Stokes) 包含两部分

  • 体积膨胀率 volumetric dilatation, λdiv(v)\lambda \text{div}(\vec{v})
  • 线膨胀率 linear dilatation, μ(u/x)\mu(\partial u/\partial x)

τxx=λ(ux+vy+wz)+2μuxτyy=λ(ux+vy+wz)+2μvyτzz=λ(ux+vy+wz)+2μwzτxy=τyx=μ(uy+vx)τxz=τzx=μ(uz+wx)τyz=τzy=μ(vz+wy)\begin{equation} \begin{gather*} \tau_{xx} = \lambda \left( \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) + 2 \mu \frac{\partial u}{\partial x} \\ \tau_{yy} = \lambda \left( \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) + 2 \mu \frac{\partial v}{\partial y} \\ \tau_{zz} = \lambda \left( \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) + 2 \mu \frac{\partial w}{\partial z} \\ \tau_{xy} = \tau_{yx} = \mu \left( \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \\ \tau_{xz} = \tau_{zx} = \mu \left( \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right) \\ \tau_{yz} = \tau_{zy} = \mu \left( \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right) \\ \end{gather*} \end{equation}

式中 λ\lambdasecond viscosity, μ\mudynamic viscosity, 定义 kinematic viscosity

ν=μ/ρ\begin{equation} \nu = \mu / \rho \end{equation}

为封闭正应力表达式,Stokes 引入 bulk viscosity 假设

λ+23μ=0\begin{equation} \lambda + \frac{2}{3} \mu = 0 \end{equation}

上式表征了有限速率体积变化时均匀温度流体中的能量耗散特性,目前除了极端高温或高压情况,尚未有实验证据表明上述关系不成立,因此应力张量可表示为

τij=μ(2Sij23δijSkk),Sij=12(uixj+ujxi)\begin{equation} \tau_{ij} = \mu \left( 2 S_{ij} - \frac{2}{3} \delta_{ij} S_{kk} \right), \quad S_{ij} = \frac{1}{2} \left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \end{equation}

Heat Conduction

热导率可以通过普朗特数 Prandtl 计算

Pr=να=μ/ρk/ρcp=cpμk\begin{equation} Pr = \frac{\nu}{\alpha} = \frac{\mu / \rho}{k / \rho c_p} = c_p \frac{\mu}{k} \end{equation}

因此

kTx=μPr(cpT)x=μ(γ1)Prc2x\begin{equation} k \frac{\partial T}{\partial x} = \frac{\mu}{Pr} \frac{\partial(c_p T)}{\partial x} = \frac{\mu}{(\gamma - 1) Pr} \frac{\partial c^2}{\partial x} \end{equation}

常温下空气 Prandtl 数 Pr=0.71Pr = 0.71

Discretization

有限差分法离散

Fvξ=(Fv)I+1/2(Fv)I1/2Δξ\begin{equation} \frac{\partial\bold{F_v}}{\partial\xi} = \frac{(\bold{F_v})_{I+1/2} - (\bold{F_v})_{I-1/2}}{\Delta{\xi}} \end{equation}

有限体积法

(FvS)I+1/2(FvS)I1/2ΩI=1ΩI(Fv(QI+1/2)SI+1/2Fv(QI1/2)SI1/2)\begin{equation} \begin{align*} \frac{(\bold{F_v} S)_{I+1/2} - (\bold{F_v} S)_{I-1/2}}{\Omega_I} = \frac{1}{\Omega_I}(\bold{F_v}(\bold{Q}_{I+1/2}) S_{I+1/2} - \bold{F_v}(\bold{Q}_{I-1/2}) S_{I-1/2}) \\ \end{align*} \end{equation}

粘性通量一般采用中心差分格式实现

  • 粘性通量描述守恒量扩散过程,物理上各向同性
  • 粘性会产生物理耗散,而迎风格式引入数值耗散,会污染边界层发展和湍流耗散
  • 扩散方程为抛物型方程,特征速度无穷大,不存在特征方向

Gradient

计算变量梯度一般有两种方法

  • 有限差分法 (Finite Difference)
  • 格林公式 (Green’s Theorem)

Finite Difference

将笛卡尔坐标系 (x,y,z)(x, y, z) 转换为曲线坐标系 (ξ,η,ζ)(\xi, \eta, \zeta), 然后在曲线坐标系上应用有限差分法

Ux=Uξξx+Uηηx+Uζζx\begin{equation} \frac{\partial U}{\partial x} = \frac{\partial U}{\partial \xi} \frac{\partial \xi} {\partial x} + \frac{\partial U}{\partial \eta} \frac{\partial \eta} {\partial x} + \frac{\partial U}{\partial \zeta} \frac{\partial \zeta}{\partial x} \end{equation}

Green’s Theorem

基于控制体面构建辅助控制体 Ω\Omega' 再应用格林公式求控制面处的流动变量 UU 梯度

Ux=1ΩΩUdSx=1Ωm=1NFUmSx,m\begin{equation} \frac{\partial U}{\partial x} = \frac{1}{\Omega'} \int_{\partial \Omega'} U dS_x' = \frac{1}{\Omega'} \sum_{m=1}^{N_F} U_m S_{x,m}' \end{equation}

对于 Cell-Centered 网格,辅助控制体如图所示

1
2
3
4
5
6
7
8
9

| | | |
----------- ----- ..... ..... -----
| I-1 | :I | :I+1 |
| * | * o * |
| | : |I+1/2: |
----------- ----- ..... ......-----
| | | |

对于 Cell-Vertex 网格,辅助控制体如图所示

1
2
3
4
5
6
7
8
9
10
11

* --------- * --------- * --------- *
| | | |
| ........... |
|I-1 :I :I+1 |
* --------- * --- o --- * --------- *
| : I+1/2 : |
| ........... |
| | | |
* --------- * --------- * --------- *

Reference

注意方程采用了两种表示法,后续需要进行统一,个人习惯采用张量表示法

0%