时间推进格式 Runge-Kutta 方法

显式时间推进格式 Runge-Kutta 基本公式

Runge-Kutta

A general m-stage Runge–Kutta method is written in the form

U(0)=Un,Un+1=U(m)U(i)=k=0i1(αi,kU(k)+Δtβi,kR(k))\begin{align} & \bold{U}^{(0)} = \bold{U}^{n}, \quad \bold{U}^{n+1} = \bold{U}^{(m)} \\ & \bold{U}^{(i)} = \sum_{k=0}^{i-1} \left( \alpha_{i,k} \bold{U}^{(k)} + \Delta t \beta_{i,k} \bold{R}^{(k)} \right) \end{align}

classic

Form 1

U(i)=U(0)αiΔtR(i1)\begin{align} \bold{U}^{(i)} = \bold{U}^{(0)} - \alpha_i \Delta t \bold{R}^{(i-1)} \end{align}

  • First-Order Scheme
stage 3 4 5
CFL σ\sigma 1.5 2.0 1.5
α1\alpha_1 0.1481 0.0833 0.0533
α2\alpha_2 0.4000 0.2069 0.1263
α3\alpha_3 1.0000 0.4265 0.2375
α4\alpha_4 1.0000 0.4414
α5\alpha_5 1.0000
  • Second-Order Scheme
stage 3 4 5
CFL σ\sigma 0.69 0.92 1.15
α1\alpha_1 0.1918 0.1084 0.0695
α2\alpha_2 0.4929 0.2602 0.1602
α3\alpha_3 1.0000 0.5052 0.2898
α4\alpha_4 1.0000 0.5060
α5\alpha_5 1.0000

Form 2

U(i)=αi,0U(0)+αi,i1U(i1)+βiΔtR(i1)\begin{align} \bold{U}^{(i)} = \alpha_{i,0} \bold{U}^{(0)} + \alpha_{i,i-1} \bold{U}^{(i-1)} + \beta_i \Delta t \bold{R}^{(i-1)} \end{align}

Form 3

dU(i)=αi(U(0)U(i1))+βiΔtcR(i1)\begin{align} d\bold{U}^{(i)} = \alpha_i (\bold{U}^{(0)} - \bold{U}^{(i-1)}) + \beta_i \Delta t c \bold{R}^{(i-1)} \end{align}

SSP-RK

Gottlieb, S.; Shu, C. W.; and Tadmor, E.: Strong Stability-Preserving High-Order Time Discretization Methods. SIAM Review , vol. 43, no. 1, 2001, pp. 89–112.

0%