无粘通量-通量分裂格式 Roe

通量差分分裂格式 FDS-Roe 基本思想、推导过程、基本形式等

Roe Scheme

Roe’s approximate Riemann solver is based on the decomposition of the flux difference (FDS) over a face of the control volume into a sum of wave contributions

Fi+12=12[F(QR)+F(QL)AˉRoei+12(QRQL)]\begin{equation} \bold{F}_{i+\frac{1}{2}} = \frac{1}{2} \begin{bmatrix} \bold{F}(\bold{Q}_R) + \bold{F}(\bold{Q}_L) - |\bar{A}_{Roe}|_{i+\frac{1}{2}} (\bold{Q}_R - \bold{Q}_L) \end{bmatrix} \end{equation}

The Roe matrix AˉRoe\bar{A}_{Roe} is identical to the convective flux Jacobian Aˉc\bar{A}_c, , where the flow variables are replaced by the Roe-averaged variables

Aˉc=FcQ\begin{equation} \bar{A}_c = \frac{\partial{\bold{F_c}}}{\partial{\bold{Q}}} \end{equation}

Conservative variables and convective fluxes

Q=[ρρuρvρwρE],Fc=[ρVρuV+pnxρvV+pnyρwV+pnzρHV],\begin{gather} \bold{Q} = \begin{bmatrix} \rho \\ \rho u \\ \rho v \\ \rho w \\ \rho E \\ \end{bmatrix}, \quad \bold{F_c} = \begin{bmatrix} \rho V \\ \rho u V + p n_x \\ \rho v V + p n_y \\ \rho w V + p n_z \\ \rho H V \\ \end{bmatrix}, \end{gather}

where total enthalpy and velocity (nx,ny,nzn_x, n_y, n_z is components of the unit normal vector)

H=E+p/ρ,V=unx+vny+wnz\begin{gather} H = E + p/\rho, \quad V = u n_x + v n_y + w n_z \end{gather}

Performing eigen decomposition on Roe matrix

AˉRoe=L1Λ~L\begin{equation} |\bar{A}_{Roe}| = L^{-1} |\tilde{\Lambda}|L \end{equation}

Thus (3D Case)

AˉRoei+12(QRQL)=ΔF1+ΔF2,3,4+ΔF3\begin{equation} |\bar{A}_{Roe}|_{i+\frac{1}{2}}(\bold{Q}_R - \bold{Q}_L) = |\Delta \bold{F}_1| + |\Delta \bold{F}_{2,3,4}| + |\Delta \bold{F}_3| \end{equation}

where

ΔF1=V~c~(Δpρ~c~ΔV2c~2)[1u~c~nxv~c~nyw~c~nzH~c~V~]ΔF2,3,4=V~{(ΔρΔpc~2)[1u~v~w~q~2/2]+ρ~[0ΔuΔVnxΔvΔVnyΔwΔVnzu~Δu+v~Δv+w~ΔwV~ΔV]}ΔF5=V~+c~(Δp+ρ~c~Δu2c~2)[1u~+c~nxv~+c~nyw~+c~nzH~+c~V~]\begin{align} |\Delta \bold{F}_1| &= |\tilde{V} - \tilde{c}|\begin{pmatrix}\displaystyle \frac{\Delta p - \tilde{\rho}\tilde{c}\Delta V}{2\tilde{c}^2} \end{pmatrix} \begin{bmatrix} 1 \\ \tilde{u} - \tilde{c} n_x \\ \tilde{v} - \tilde{c} n_y \\ \tilde{w} - \tilde{c} n_z \\ \tilde{H} - \tilde{c} \tilde{V} \end{bmatrix} \\ |\Delta \bold{F}_{2,3,4}| &= |\tilde{V}| \begin{Bmatrix} \begin{pmatrix}\displaystyle \Delta \rho - \frac{\Delta p}{\tilde{c}^2} \end{pmatrix} \begin{bmatrix} 1 \\ \tilde{u} \\ \tilde{v} \\ \tilde{w} \\ \tilde{q}^2/2 \end{bmatrix} + \tilde{\rho} \begin{bmatrix} 0 \\ \Delta{u} - \Delta V n_x \\ \Delta{v} - \Delta V n_y \\ \Delta{w} - \Delta V n_z \\ \tilde{u} \Delta{u} + \tilde{v} \Delta{v} + \tilde{w} \Delta{w} - \tilde{V} \Delta{V} \end{bmatrix} \end{Bmatrix} \\ |\Delta \bold{F}_5| &= |\tilde{V} + \tilde{c}|\begin{pmatrix}\displaystyle \frac{\Delta p + \tilde{\rho}\tilde{c}\Delta u}{2\tilde{c}^2} \end{pmatrix} \begin{bmatrix} 1 \\ \tilde{u} + \tilde{c} n_x \\ \tilde{v} + \tilde{c} n_y \\ \tilde{w} + \tilde{c} n_z \\ \tilde{H} + \tilde{c} \tilde{V} \end{bmatrix} \\ \end{align}

conservative variables difference

ΔQ=QRQL\begin{equation} \Delta \bold{Q} = \bold{Q_R} - \bold{Q_L} \end{equation}

Roe-averaged variables

Roe’s averages are computed from the left and the right state

ρ~=ρLρRu~=uLρL+uRρRρL+ρRv~=vLρL+vRρRρL+ρRw~=wLρL+wRρRρL+ρRH~=HLρL+HRρRρL+ρRc~=(γ1)(H~q~2/2)V~=u~nx+v~ny+w~nzq~2=u~2+v~2+w~2\begin{align} \tilde{\rho} &= \sqrt{\rho_L \rho_R} \\ \tilde{u} &= \frac{u_L \sqrt{\rho_L} + u_R \sqrt{\rho_R}} {\sqrt{\rho_L} + \sqrt{\rho_R}} \\ \tilde{v} &= \frac{v_L \sqrt{\rho_L} + v_R \sqrt{\rho_R}} {\sqrt{\rho_L} + \sqrt{\rho_R}} \\ \tilde{w} &= \frac{w_L \sqrt{\rho_L} + w_R \sqrt{\rho_R}} {\sqrt{\rho_L} + \sqrt{\rho_R}} \\ \tilde{H} &= \frac{H_L \sqrt{\rho_L} + H_R \sqrt{\rho_R}} {\sqrt{\rho_L} + \sqrt{\rho_R}} \\ \tilde{c} &= \sqrt{(\gamma - 1) (\tilde{H} - \tilde{q}^2/2)} \\ \tilde{V} &= \tilde{u} n_x + \tilde{v} n_y + \tilde{w} n_z \\ \tilde{q}^2 &= \tilde{u}^2 + \tilde{v}^2 + \tilde{w}^2 \\ \end{align}

the left and right state can be reconstructed by MUSCL scheme

Harten’s entropy correction

Λc={Λcif Λc>δΛc2+δ22δif Λcδ\begin{equation} |\Lambda_c| = \begin{cases} |\Lambda_c| & \text{if } |\Lambda_c| > \delta \\ \displaystyle{\frac{\Lambda_c^2 + \delta^2}{2 \delta}} & \text{if } |\Lambda_c| \leq \delta \\ \end{cases} \end{equation}

Application

  • Stationary expansion question
  • use entropy correction and increase dissipation
0%